« Vrati se
A function f : I \to \mathbb R, defined on an interval I, is called concave if f(\theta x + (1 - \theta)y) \geq \theta f(x) + (1 - \theta)f(y) for all x, y \in I and 0 \leq \theta \leq 1. Assume that the functions f_1, \ldots , f_n, having all nonnegative values, are concave. Prove that the function (f_1f_2 \cdots f_n)^{1/n} is concave.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1978IMO Shortlist 1997 problem 221
1829IMO Shortlist 1992 problem 24
1788IMO Shortlist 1990 problem 180
1748IMO Shortlist 1989 problem 101
1685IMO Shortlist 1987 problem 10
1557IMO Shortlist 1979 problem 260