Given the integer
![n > 1](/media/m/c/8/9/c8999d29e042cf52e485c7a7b7301b0a.png)
and the real number
![a > 0](/media/m/7/9/1/791ecf93ca3ba277ca9acb1d38d57bd3.png)
determine the maximum of
![\sum_{i=1}^{n-1} x_i x_{i+1}](/media/m/5/4/3/54314fcc5f06a62a74aa2c4e53e6874b.png)
taken over all nonnegative numbers
![x_i](/media/m/c/2/8/c28855cc6fcd9627da560688b31cda10.png)
with sum
%V0
Given the integer $n > 1$ and the real number $a > 0$ determine the maximum of $\sum_{i=1}^{n-1} x_i x_{i+1}$ taken over all nonnegative numbers $x_i$ with sum $a.$