« Vrati se
Suppose that {x_1, x_2, \dots , x_n} are positive integers for which x_1 + x_2 + \cdots+ x_n = 2(n + 1). Show that there exists an integer r with 0 \leq r \leq n - 1 for which the following n - 1 inequalities hold:
x_{r+1} + \cdots + x_{r+i} \leq 2i+ 1, \qquad \qquad  \forall i, 1 \leq i \leq n - r;
x_{r+1} + \cdots + xn + x_1 + \cdots+ x_i \leq 2(n - r + i) + 1, \qquad \qquad \forall i, 1 \leq i \leq r - 1.
Prove that if all the inequalities are strict, then r is unique and that otherwise there are exactly two such r.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1353IMO Shortlist 1969 problem 230
1354IMO Shortlist 1969 problem 240
1355IMO Shortlist 1969 problem 250
1598IMO Shortlist 1983 problem 20
1606IMO Shortlist 1983 problem 100
1611IMO Shortlist 1983 problem 150