« Vrati se
Let f : [0, 1] \to \mathbb R be continuous and satisfy: bf(2x) = f(x), \quad 0 \leq x \leq 1/2 f(x) = b+(1-b)f(2x-1), 1/2 \leq x \leq 1 where \displaystyle b = \frac{1+c}{2+c}, c > 0. Show that 0 < f(x)-x < c for every x, 0 < x < 1.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1604IMO Shortlist 1983 problem 80
1612IMO Shortlist 1983 problem 160
1613IMO Shortlist 1983 problem 170
1617IMO Shortlist 1983 problem 210
1620IMO Shortlist 1983 problem 240
1621IMO Shortlist 1983 problem 250