« Vrati se
Let f : [0, 1] \to \mathbb R be continuous and satisfy: bf(2x) = f(x), \quad 0 \leq x \leq 1/2 f(x) = b+(1-b)f(2x-1), 1/2 \leq x \leq 1 where \displaystyle b = \frac{1+c}{2+c}, c > 0. Show that 0 < f(x)-x < c for every x, 0 < x < 1.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1621IMO Shortlist 1983 problem 250
1620IMO Shortlist 1983 problem 240
1617IMO Shortlist 1983 problem 210
1613IMO Shortlist 1983 problem 170
1612IMO Shortlist 1983 problem 160
1604IMO Shortlist 1983 problem 80