« Vrati se
Let F(n) be the set of polynomials P(x) = a_0+a_1x+\cdots+a_nx^n, with a_0, a_1, . . . , a_n \in \mathbb R and 0 \leq a_0 = a_n \leq a_1 = a_{n-1 } \leq \cdots \leq a_{[n/2] }= a_{[(n+1)/2]}. Prove that if f \in F(m) and g \in  F(n), then fg \in  F(m + n).

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1621IMO Shortlist 1983 problem 250
1620IMO Shortlist 1983 problem 240
1617IMO Shortlist 1983 problem 210
1613IMO Shortlist 1983 problem 170
1607IMO Shortlist 1983 problem 110
1604IMO Shortlist 1983 problem 80