« Vrati se
For any polynomial P(x)=a_0+a_1x+\ldots+a_kx^k with integer coefficients, the number of odd coefficients is denoted by o(P). For i-0,1,2,\ldots let Q_i(x)=(1+x)^i. Prove that if i_1,i_2,\ldots,i_n are integers satisfying 0\le i_1<i_2<\ldots<i_n, then: o(Q_{i_1}+Q_{i_2}+\ldots+Q_{i_n})\ge o(Q_{i_1}).

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1793IMO Shortlist 1990 problem 236
1699IMO Shortlist 1987 problem 150
1614IMO Shortlist 1983 problem 180
1569IMO Shortlist 1981 problem 122
1508IMO Shortlist 1977 problem 100
1438IMO Shortlist 1972 problem 81