« Vrati se
Let D be the interior of the circle C and let A \in C. Show that the function f : D \to \mathbb R, f(M)=\frac{|MA|}{|MM'|} where M' = AM \cap C, is strictly convex; i.e., f(P) <\frac{f(M_1)+f(M_2)}{2}, \forall M_1,M_2 \in D, M_1 \neq M_2 where P is the midpoint of the segment M_1M_2.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1444IMO Shortlist 1973 problem 20
1447IMO Shortlist 1973 problem 50
1483IMO Shortlist 1975 problem 120
1502IMO Shortlist 1977 problem 40
1568IMO Shortlist 1981 problem 110
1655IMO Shortlist 1985 problem 140