« Vrati se
Let x_1,x_2,\ldots,x_n be real numbers satisfying x_1^2+x_2^2+\ldots+x_n^2=1. Prove that for every integer k\ge2 there are integers a_1,a_2,\ldots,a_n, not all zero, such that |a_i|\le k-1 for all i, and |a_1x_1+a_2x_2+\ldots+a_nx_n|\le{(k-1)\sqrt n\over k^n-1}. (IMO Problem 3)

Proposed by Germany, FR

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1438IMO Shortlist 1972 problem 81
1508IMO Shortlist 1977 problem 100
1569IMO Shortlist 1981 problem 122
1614IMO Shortlist 1983 problem 180
1644IMO Shortlist 1985 problem 30
1793IMO Shortlist 1990 problem 236