« Vrati se
Let n\ge2 be an integer. Prove that if k^2+k+n is prime for all integers k such that 0\le k\le\sqrt{n\over3}, then k^2+k+n is prime for all integers k such that 0\le k\le n-2.(IMO Problem 6)

Original Formulation

Let f(x) = x^2 + x + p, p \in \mathbb N. Prove that if the numbers f(0), f(1), \cdots , f(\sqrt{p\over 3} ) are primes, then all the numbers f(0), f(1), \cdots , f(p - 2) are primes.

Proposed by Soviet Union.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1426IMO Shortlist 1971 problem 130
1462IMO Shortlist 1974 problem 30
1637IMO Shortlist 1984 problem 161
1699IMO Shortlist 1987 problem 150
1716IMO Shortlist 1988 problem 92
1848IMO Shortlist 1992 problem 210