« Vrati se
Let p be the product of two consecutive integers greater than 2. Show that there are no integers x_1, x_2, \ldots, x_p satisfying the equation
\sum^p_{i = 1} x^2_i - \frac {4}{4 \cdot p + 1} \left( \sum^p_{i = 1} x_i \right)^2 = 1
OR

Show that there are only two values of p for which there are integers x_1, x_2, \ldots, x_p satisfying
\sum^p_{i = 1} x^2_i - \frac {4}{4 \cdot p + 1} \left( \sum^p_{i = 1} x_i \right)^2 = 1

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1355IMO Shortlist 1969 problem 250
1354IMO Shortlist 1969 problem 240
1353IMO Shortlist 1969 problem 230
1348IMO Shortlist 1969 problem 180
1345IMO Shortlist 1969 problem 151
1343IMO Shortlist 1969 problem 130