« Vrati se
Let \{a_k\}^{\infty}_1 be a sequence of non-negative real numbers such that:
a_k - 2 \cdot a_{k + 1} + a_{k + 2} \geq 0
and \sum^k_{j = 1} a_j \leq 1 for all k = 1,2, \ldots. Prove that:
0 \leq (a_{k} - a_{k + 1}) < \frac {2}{k^2}
for all k = 1,2, \ldots.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1845IMO Shortlist 1992 problem 180
1812IMO Shortlist 1991 problem 140
1796IMO Shortlist 1990 problem 260
1749IMO Shortlist 1989 problem 113
1715IMO Shortlist 1988 problem 80
1708IMO Shortlist 1988 problem 12