« Vrati se
Let ABCD be a convex quadrilateral such that the sides AB, AD, BC satisfy AB = AD + BC. There exists a point P inside the quadrilateral at a distance h from the line CD such that AP = h + AD and BP = h + BC. Show that:
\frac {1}{\sqrt {h}} \geq \frac {1}{\sqrt {AD}} + \frac {1}{\sqrt {BC}}

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1144IMO Shortlist 1959 problem 47
1157IMO Shortlist 1961 problem 41
1176IMO Shortlist 1964 problem 41
1456IMO Shortlist 1973 problem 140
1599IMO Shortlist 1983 problem 30
1786IMO Shortlist 1990 problem 160