« Vrati se
Let a_1 \geq a_2 \geq a_3 \in \mathbb{Z}^+ be given and let N(a_1, a_2, a_3) be the number of solutions (x_1, x_2, x_3) of the equation

\sum^3_{k=1} \frac{a_k}{x_k} = 1.

where x_1, x_2, and x_3 are positive integers. Prove that N(a_1, a_2, a_3) \leq 6 a_1 a_2 (3 + ln(2 a_1)).

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1353IMO Shortlist 1969 problem 230
1354IMO Shortlist 1969 problem 240
1355IMO Shortlist 1969 problem 250
1747IMO Shortlist 1989 problem 90
1763IMO Shortlist 1989 problem 250
1765IMO Shortlist 1989 problem 270