« Vrati se
Let a, b \in \mathbb{N} with 1 \leq a \leq b, and M = \left[\frac {a + b}{2} \right]. Define a function f: \mathbb{Z} \mapsto \mathbb{Z} by
f(n) = \begin{cases} n + a, & \text{if } n \leq M, \\ n - b, & \text{if } n \geq M. \end{cases}
Let f^1(n) = f(n), f_{i + 1}(n) = f(f^i(n)), i = 1, 2, \ldots Find the smallest natural number k such that f^k(0) = 0.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1978IMO Shortlist 1997 problem 221
1829IMO Shortlist 1992 problem 24
1748IMO Shortlist 1989 problem 101
1685IMO Shortlist 1987 problem 10
1557IMO Shortlist 1979 problem 260
1525IMO Shortlist 1978 problem 110