« Vrati se
In the plane we are given a set E of 1991 points, and certain pairs of these points are joined with a path. We suppose that for every point of E, there exist at least 1593 other points of E to which it is joined by a path. Show that there exist six points of E every pair of which are joined by a path.

Alternative version: Is it possible to find a set E of 1991 points in the plane and paths joining certain pairs of the points in E such that every point of E is joined with a path to at least 1592 other points of E, and in every subset of six points of E there exist at least two points that are not joined?

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1815IMO Shortlist 1991 problem 171
1816IMO Shortlist 1991 problem 180
1817IMO Shortlist 1991 problem 190
1818IMO Shortlist 1991 problem 200
1819IMO Shortlist 1991 problem 210
1824IMO Shortlist 1991 problem 260