« Vrati se
Let f and g be two integer-valued functions defined on the set of all integers such that

(a) f(m + f(f(n))) = -f(f(m+ 1) - n for all integers m and n;
(b) g is a polynomial function with integer coefficients and g(n) = g(f(n)) \forall n \in \mathbb{Z}.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1214IMO Shortlist 1966 problem 311
1564IMO Shortlist 1981 problem 71
1577IMO Shortlist 1982 problem 13
1726IMO Shortlist 1988 problem 191
1733IMO Shortlist 1988 problem 260
1978IMO Shortlist 1997 problem 221