« Vrati se
An infinite sequence \,x_{0},x_{1},x_{2},\ldots \, of real numbers is said to be bounded if there is a constant \,C\, such that \, \vert x_{i} \vert \leq C\, for every \,i\geq 0. Given any real number \,a > 1,\, construct a bounded infinite sequence x_{0},x_{1},x_{2},\ldots \, such that
\vert x_{i} - x_{j} \vert \vert i - j \vert^{a}\geq 1
for every pair of distinct nonnegative integers i, j.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1958IMO Shortlist 1997 problem 20
1841IMO Shortlist 1992 problem 140
1807IMO Shortlist 1991 problem 91
1783IMO Shortlist 1990 problem 130
1735IMO Shortlist 1988 problem 280
1503IMO Shortlist 1977 problem 50