« Vrati se
Let \mathbb{R}^+ be the set of all non-negative real numbers. Given two positive real numbers a and b, suppose that a mapping f: \mathbb{R}^+ \mapsto \mathbb{R}^+ satisfies the functional equation:

f(f(x)) + af(x) = b(a + b)x.

Prove that there exists a unique solution of this equation.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1525IMO Shortlist 1978 problem 110
1557IMO Shortlist 1979 problem 260
1685IMO Shortlist 1987 problem 10
1748IMO Shortlist 1989 problem 101
1788IMO Shortlist 1990 problem 180
1978IMO Shortlist 1997 problem 221