« Vrati se
Let \lfloor x \rfloor denote the greatest integer less than or equal to x. Pick any x_1 in [0, 1) and define the sequence x_1, x_2, x_3, \ldots by x_{n+1} = 0 if x_n = 0 and x_{n+1} = \frac{1}{x_n} - \left \lfloor \frac{1}{x_n} \right \rfloor otherwise. Prove that

x_1 + x_2 + \ldots + x_n < \frac{F_1}{F_2} + \frac{F_2}{F_3} + \ldots + \frac{F_n}{F_{n+1}},

where F_1 = F_2 = 1 and F_{n+2} = F_{n+1} + F_n for n \geq 1.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1708IMO Shortlist 1988 problem 12
1715IMO Shortlist 1988 problem 80
1731IMO Shortlist 1988 problem 240
1749IMO Shortlist 1989 problem 113
1796IMO Shortlist 1990 problem 260
1812IMO Shortlist 1991 problem 140