« Vrati se
Let f(x) = x^8 + 4x^6 + 2x^4 + 28x^2 + 1. Let p > 3 be a prime and suppose there exists an integer z such that p divides f(z). Prove that there exist integers z_1, z_2, \ldots, z_8 such that if g(x) = (x - z_1)(x - z_2) \cdot \ldots \cdot (x - z_8), then all coefficients of f(x) - g(x) are divisible by p.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1345IMO Shortlist 1969 problem 151
1348IMO Shortlist 1969 problem 180
1353IMO Shortlist 1969 problem 230
1354IMO Shortlist 1969 problem 240
1355IMO Shortlist 1969 problem 250
1828IMO Shortlist 1992 problem 10