« Vrati se
For each positive integer \,n,\;S(n)\, is defined to be the greatest integer such that, for every positive integer \,k\leq S(n),\;n^{2}\, can be written as the sum of \,k\, positive squares.

a.) Prove that \,S(n)\leq n^{2}-14\, for each \,n\geq 4.
b.) Find an integer \,n\, such that \,S(n)=n^{2}-14.
c.) Prove that there are infintely many integers \,n\, such that S(n)=n^{2}-14.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1426IMO Shortlist 1971 problem 130
1462IMO Shortlist 1974 problem 30
1637IMO Shortlist 1984 problem 161
1704IMO Shortlist 1987 problem 200
1716IMO Shortlist 1988 problem 92
1840IMO Shortlist 1992 problem 136