« Vrati se
Define a sequence <f(n)>^{\infty}_{n=1} of positive integers by f(1) = 1 and

{{ INVALID LATEX }}

for n \geq 2. Let S = \{n \in \mathbb{N} | f(n) = 1993\}.

(i) Prove that S is an infinite set.
(ii) Find the least positive integer in S.
(iii) If all the elements of S are written in ascending order as n_1 < n_2 < n_3 < \ldots , show that \lim_{i\rightarrow\infty} \frac{n_{i+1}}{n_i} = 3.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1875IMO Shortlist 1994 problem A14
1927IMO Shortlist 1996 problem A114
1984IMO Shortlist 1998 problem A213
2012IMO Shortlist 1999 problem A23
2120IMO Shortlist 2003 problem A11
2179IMO Shortlist 2005 problem A34