« Vrati se
Let n \geq 2, n \in \mathbb{N} and A_0 = (a_{01},a_{02}, \ldots, a_{0n}) be any n-tuple of natural numbers, such that 0 \leq a_{0i} \leq i-1, for i = 1, \ldots, n.
n-tuples A_1= (a_{11},a_{12}, \ldots, a_{1n}), A_2 = (a_{21},a_{22}, \ldots, a_{2n}), \ldots are defined by: a_{i+1,j} = Card \{a_{i,l}| 1 \leq l \leq j-1, a_{i,l} \geq a_{i,j}\}, for i \in \mathbb{N} and j = 1, \ldots, n. Prove that there exists k \in \mathbb{N}, such that A_{k+2} = A_{k}.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1858IMO Shortlist 1993 problem C10
1859IMO Shortlist 1993 problem C22
2073IMO Shortlist 2001 problem C33
2129IMO Shortlist 2003 problem C44
2156IMO Shortlist 2004 problem C35
2157IMO Shortlist 2004 problem C42