« Vrati se
Let n \geq 2, n \in \mathbb{N} and A_0 = (a_{01},a_{02}, \ldots, a_{0n}) be any n-tuple of natural numbers, such that 0 \leq a_{0i} \leq i-1, for i = 1, \ldots, n.
n-tuples A_1= (a_{11},a_{12}, \ldots, a_{1n}), A_2 = (a_{21},a_{22}, \ldots, a_{2n}), \ldots are defined by: a_{i+1,j} = Card \{a_{i,l}| 1 \leq l \leq j-1, a_{i,l} \geq a_{i,j}\}, for i \in \mathbb{N} and j = 1, \ldots, n. Prove that there exists k \in \mathbb{N}, such that A_{k+2} = A_{k}.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
2157IMO Shortlist 2004 problem C42
2156IMO Shortlist 2004 problem C35
2129IMO Shortlist 2003 problem C44
2073IMO Shortlist 2001 problem C33
1859IMO Shortlist 1993 problem C22
1858IMO Shortlist 1993 problem C10