« Vrati se
Let \mathbb{R} denote the set of all real numbers and \mathbb{R}^+ the subset of all positive ones. Let \alpha and \beta be given elements in \mathbb{R}, not necessarily distinct. Find all functions f: \mathbb{R}^+ \mapsto \mathbb{R} such that

f(x)f(y) = y^{\alpha} f \left( \frac{x}{2} \right) + x^{\beta} f \left( \frac{y}{2} \right) \forall x,y \in \mathbb{R}^+.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1875IMO Shortlist 1994 problem A14
2040IMO Shortlist 2000 problem A36
2068IMO Shortlist 2001 problem A414
2149IMO Shortlist 2004 problem A32
2180IMO Shortlist 2005 problem A416
2237IMO Shortlist 2007 problem A49