Define the sequences
as follows.
.
If
is even then
,
,
.
If
is odd, then
,
,
.
Find the number of positive integers
such that some
.
%V0
Define the sequences $a_n, b_n, c_n$ as follows. $a_0 = k, b_0 = 4, c_0 = 1$.
If $a_n$ is even then $a_{n + 1} = \frac {a_n}{2}$, $b_{n + 1} = 2b_n$, $c_{n + 1} = c_n$.
If $a_n$ is odd, then $a_{n + 1} = a_n - \frac {b_n}{2} - c_n$, $b_{n + 1} = b_n$, $c_{n + 1} = b_n + c_n$.
Find the number of positive integers $k < 1995$ such that some $a_n = 0$.