« Vrati se
Let n be an integer, n \geq 3. Let a_1, a_2, \ldots, a_n be real numbers such that 2 \leq a_i \leq 3 for i = 1, 2, \ldots, n. If s = a_1 + a_2 + \ldots + a_n, prove that \frac{a^{2}_{1}+a^{2}_{2}-a^{2}_{3}}{a_{1}+a_{2}-a_{3}}+\frac{a^{2}_{2}+a^{2}_{3}-a^{2}_{4}}{a_{2}+a_{3}-a_{4}}+\ldots+\frac{a^{2}_{n}+a^{2}_{1}-a^{2}_{2}}{a_{n}+a_{1}-a_{2}}\leq 2s-2n.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
2266IMO Shortlist 2008 problem A36
2207IMO Shortlist 2006 problem A43
2206IMO Shortlist 2006 problem A31
1916IMO Shortlist 1995 problem NC43
1913IMO Shortlist 1995 problem NC15
1904IMO Shortlist 1995 problem A60