« Vrati se
Let n be an integer,n \geq 3. Let x_1, x_2, \ldots, x_n be real numbers such that x_i < x_{i+1} for 1 \leq i \leq n - 1. Prove that

\frac{n(n-1)}{2}\sum_{i < j}x_{i}x_{j}>\left(\sum^{n-1}_{i=1}(n-i)\cdot x_{i}\right)\cdot\left(\sum^{n}_{j=2}(j-1)\cdot x_{j}\right)

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1901IMO Shortlist 1995 problem A31
1916IMO Shortlist 1995 problem NC43
2239IMO Shortlist 2007 problem A61
2266IMO Shortlist 2008 problem A36
2268IMO Shortlist 2008 problem A59
2270IMO Shortlist 2008 problem A70