« Vrati se
Let ABCDEF be a convex hexagon with AB = BC = CD and DE = EF = FA, such that \angle BCD = \angle EFA = \frac {\pi}{3}. Suppose G and H are points in the interior of the hexagon such that \angle AGB = \angle DHE = \frac {2\pi}{3}. Prove that AG + GB + GH + DH + HE \geq CF.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1913IMO Shortlist 1995 problem NC15
1916IMO Shortlist 1995 problem NC43
1947IMO Shortlist 1996 problem G50
2137IMO Shortlist 2003 problem G61
2165IMO Shortlist 2004 problem G47
2252IMO Shortlist 2007 problem G412