« Vrati se
Let ABCDEF be a convex hexagon with AB = BC = CD and DE = EF = FA, such that \angle BCD = \angle EFA = \frac {\pi}{3}. Suppose G and H are points in the interior of the hexagon such that \angle AGB = \angle DHE = \frac {2\pi}{3}. Prove that AG + GB + GH + DH + HE \geq CF.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
2252IMO Shortlist 2007 problem G412
2165IMO Shortlist 2004 problem G47
2137IMO Shortlist 2003 problem G61
1947IMO Shortlist 1996 problem G50
1916IMO Shortlist 1995 problem NC43
1913IMO Shortlist 1995 problem NC15