« Vrati se
Let ABCD be a convex quadrilateral and O a point inside it. Let the parallels to the lines BC, AB, DA, CD through the point O meet the sides AB, BC, CD, DA of the quadrilateral ABCD at the points E, F, G, H, respectively. Then, prove that \sqrt {\left|AHOE\right|} + \sqrt {\left|CFOG\right|}\leq\sqrt {\left|ABCD\right|}, where \left|P_1P_2...P_n\right| is an abbreviation for the non-directed area of an arbitrary polygon P_1P_2...P_n.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1951IMO Shortlist 1996 problem G90
2057IMO Shortlist 2000 problem G76
2167IMO Shortlist 2004 problem G60
2189IMO Shortlist 2005 problem C80
2248IMO Shortlist 2007 problem C80
2309IMO Shortlist 2009 problem G51