« Vrati se
Let a_{1}, a_{2}...a_{n} be non-negative reals, not all zero. Show that that
(a) The polynomial p(x) = x^{n} - a_{1}x^{n - 1} + ... - a_{n - 1}x - a_{n} has preceisely 1 positive real root R.
(b) let A = \sum_{i = 1}^n a_{i} and B = \sum_{i = 1}^n ia_{i}. Show that A^{A} \leq R^{B}.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1956IMO Shortlist 1996 problem N50
1932IMO Shortlist 1996 problem A60
1931IMO Shortlist 1996 problem A51
1929IMO Shortlist 1996 problem A31
1928IMO Shortlist 1996 problem A23
1927IMO Shortlist 1996 problem A114