« Vrati se
Let f be a function from the set of real numbers \mathbb{R} into itself such for all x \in \mathbb{R}, we have |f(x)| \leq 1 and

f \left( x + \frac{13}{42} \right) + f(x) = f \left( x + \frac{1}{6} \right) + f \left( x + \frac{1}{7} \right).

Prove that f is a periodic function (that is, there exists a non-zero real number c such f(x+c) = f(x) for all x \in \mathbb{R}).

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1932IMO Shortlist 1996 problem A60
2124IMO Shortlist 2003 problem A51
2152IMO Shortlist 2004 problem A60
2269IMO Shortlist 2008 problem A63
2294IMO Shortlist 2009 problem A55
2296IMO Shortlist 2009 problem A712