« Vrati se
Let ABC be an equilateral triangle and let P be a point in its interior. Let the lines AP, BP, CP meet the sides BC, CA, AB at the points A_1, B_1, C_1, respectively. Prove that

A_1B_1 \cdot B_1C_1 \cdot C_1A_1 \ge A_1B \cdot B_1C \cdot C_1A.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1865IMO Shortlist 1993 problem G30
1866IMO Shortlist 1993 problem G42
1939IMO Shortlist 1996 problem C41
1943IMO Shortlist 1996 problem G17
1945IMO Shortlist 1996 problem G36
2307IMO Shortlist 2009 problem G39