Školjka
Tečajevi
MetaMath '24
Izbornik
Početna
Arhiva zadataka
Predavanja
Natjecanja
Tečajevi
Registracija
Prijava
Svi zadaci
Rješenja
Traži
Pomoć
O nama
« Vrati se
IMO Shortlist 1997 problem 19
1997
shortlist
Let
be real numbers. Show that
Proposed by Romania
%V0 Let $a_1\geq \cdots \geq a_n \geq a_{n + 1} = 0$ be real numbers. Show that $$\sqrt {\sum_{k = 1}^n a_k} \leq \sum_{k = 1}^n \sqrt k (\sqrt {a_k} - \sqrt {a_{k + 1}}).$$ Proposed by Romania
Slični zadaci
Lista
Tekst
Dva stupca
Zadaci
#
Naslov
Oznake
Rj.
Kvaliteta
Težina
1972
IMO Shortlist 1997 problem 16
1997
geo
shortlist
trokut
0
1973
IMO Shortlist 1997 problem 17
1997
IMO
shortlist
tb
5
1974
IMO Shortlist 1997 problem 18
1997
geo
kružnica
shortlist
trokut
3
1976
IMO Shortlist 1997 problem 20
1997
geo
kružnica
shortlist
trokut
1
1977
IMO Shortlist 1997 problem 21
1997
IMO
komb
shortlist
0
1978
IMO Shortlist 1997 problem 22
1997
alg
funkcija
shortlist
1