« Vrati se
Let A = (a_1, a_2, \ldots, a_{2001}) be a sequence of positive integers. Let m be the number of 3-element subsequences (a_i,a_j,a_k) with 1 \leq i < j < k \leq 2001, such that a_j = a_i + 1 and a_k = a_j + 1. Considering all such sequences A, find the greatest value of m.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
2298IMO Shortlist 2009 problem C29
2210IMO Shortlist 2006 problem C119
2074IMO Shortlist 2001 problem C48
2073IMO Shortlist 2001 problem C33
2046IMO Shortlist 2000 problem C22
1989IMO Shortlist 1998 problem C22