« Vrati se
Let M be a point in the interior of triangle ABC. Let A' lie on BC with MA' perpendicular to BC. Define B' on CA and C' on AB similarly. Define

p(M) = \frac{MA' \cdot MB' \cdot MC'}{MA \cdot MB \cdot MC}.

Determine, with proof, the location of M such that p(M) is maximal. Let \mu(ABC) denote this maximum value. For which triangles ABC is the value of \mu(ABC) maximal?

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
2084IMO Shortlist 2001 problem G61
2083IMO Shortlist 2001 problem G50
2081IMO Shortlist 2001 problem G32
2079IMO Shortlist 2001 problem G117
1866IMO Shortlist 1993 problem G42
1865IMO Shortlist 1993 problem G30