« Vrati se
Let ABC be an acute triangle. Let DAC,EAB, and FBC be isosceles triangles exterior to ABC, with DA=DC, EA=EB, and FB=FC, such that

\angle ADC = 2\angle BAC, \quad \angle BEA= 2 \angle ABC, \quad \angle CFB = 2 \angle ACB.

Let D' be the intersection of lines DB and EF, let E' be the intersection of EC and DF, and let F' be the intersection of FA and DE. Find, with proof, the value of the sum

\frac{DB}{DD'}+\frac{EC}{EE'}+\frac{FA}{FF'}.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
2081IMO Shortlist 2001 problem G32
2082IMO Shortlist 2001 problem G40
2084IMO Shortlist 2001 problem G61
2085IMO Shortlist 2001 problem G70
2254IMO Shortlist 2007 problem G60
2310IMO Shortlist 2009 problem G61