« Vrati se
Let \mathbb{R}^+ be the set of all positive real numbers. Find all functions f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+ that satisfy the following conditions:

- f(xyz)+f(x)+f(y)+f(z)=f(\sqrt{xy})f(\sqrt{yz})f(\sqrt{zx}) for all x,y,z\in\mathbb{R}^+;

- f(x)<f(y) for all 1\le x<y.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
2434MEMO 2010 pojedinačno problem 120
2294IMO Shortlist 2009 problem A55
2269IMO Shortlist 2008 problem A63
2152IMO Shortlist 2004 problem A60
1932IMO Shortlist 1996 problem A60
1903IMO Shortlist 1995 problem A50