Let
be the number of all non-negative integers
satisfying the following conditions:
(1) The integer
has exactly
digits in the decimal representation (where the first digit is not necessarily non-zero!), i. e. we have
.
(2) These
digits of n can be permuted in such a way that the resulting number is divisible by 11.
Show that for any positive integer number
we have
.


(1) The integer



(2) These

Show that for any positive integer number

