« Vrati se
Let ABC be a triangle, and P a point in the interior of this triangle. Let D, E, F be the feet of the perpendiculars from the point P to the lines BC, CA, AB, respectively. Assume that

AP^{2}+PD^{2}=BP^{2}+PE^{2}=CP^{2}+PF^{2}.

Furthermore, let I_{a}, I_{b}, I_{c} be the excenters of triangle ABC. Show that the point P is the circumcenter of triangle I_{a}I_{b}I_{c}.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1865IMO Shortlist 1993 problem G30
1866IMO Shortlist 1993 problem G42
2130IMO Shortlist 2003 problem C52
2136IMO Shortlist 2003 problem G511
2273IMO Shortlist 2008 problem C34
2280IMO Shortlist 2008 problem G414