« Vrati se
Let {a_1,a_2,\dots,a_n} be positive real numbers, {n>1}. Denote by g_n their geometric mean, and by A_1,\,A_2,\,\dots,\,A_n the sequence of arithmetic means defined by
A_k=\frac{a_1+a_2+\cdots+a_k}{k},\qquad k=1,2,\dots,n.
Let G_n be the geometric mean of A_1,A_2,\dots,A_n. Prove the inequality n \root n\of{\frac{G_n}{A_n}}+ \frac{g_n}{G_n}\le n+1 and establish the cases of equality.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1904IMO Shortlist 1995 problem A60
2067IMO Shortlist 2001 problem A39
2207IMO Shortlist 2006 problem A43
2239IMO Shortlist 2007 problem A61
2268IMO Shortlist 2008 problem A59
2270IMO Shortlist 2008 problem A70