« Vrati se
Let A_1A_2A_3...A_n be a regular n-gon. Let B_1 and B_n be the midpoints of its sides A_1A_2 and A_{n-1}A_n. Also, for every i\in\left\{2;\;3;\;4;\;...;\;n-1\right\}, let S be the point of intersection of the lines A_1A_{i+1} and A_nA_i, and let B_i be the point of intersection of the angle bisector bisector of the angle \measuredangle A_iSA_{i+1} with the segment A_iA_{i+1}.

Prove that: \sum_{i=1}^{n-1} \measuredangle A_1B_iA_n=180^{\circ}.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
2309IMO Shortlist 2009 problem G51
2302IMO Shortlist 2009 problem C60
2282IMO Shortlist 2008 problem G65
2281IMO Shortlist 2008 problem G51
2245IMO Shortlist 2007 problem C52
2167IMO Shortlist 2004 problem G60