A holey triangle is an upward equilateral triangle of side length
with
upward unit triangular holes cut out. A diamond is a
unit rhombus.
Prove that a holey triangle
can be tiled with diamonds if and only if the following condition holds: Every upward equilateral triangle of side length
in
contains at most
holes, for
.



Prove that a holey triangle





Slični zadaci
Let the sides
and
of the quadrilateral
(such that
is not parallel to
) intersect at point
. Points
and
are circumcenters and points
and
are orthocenters of triangles
and
, respectively. Denote the midpoints of segments
and
by
and
, respectively. Prove that the perpendicular from
on
, the perpendicular from
on
and the lines
are concurrent.
Proposed by Ukraine





















Proposed by Ukraine
Determine the smallest positive real number
with the following property. Let
be a convex quadrilateral, and let points
,
,
, and
lie on sides
,
,
, and
, respectively. Consider the areas of triangles
,
,
and
; let
be the sum of the two smallest ones, and let
be the area of quadrilateral
. Then we always have
.
Author: unknown author, USA


















Author: unknown author, USA