« Vrati se
Real numbers a_{1}, a_{2}, \ldots, a_{n} are given. For each i, (1 \leq i \leq n ), define
d_{i} = \max \{ a_{j}\mid 1 \leq j \leq i \} - \min \{ a_{j}\mid i \leq j \leq n \}
and let d = \max \{d_{i}\mid 1 \leq i \leq n \}.

(a) Prove that, for any real numbers x_{1}\leq x_{2}\leq \cdots \leq x_{n},
\max \{ |x_{i} - a_{i}| \mid 1 \leq i \leq n \}\geq \frac {d}{2}. \quad \quad (*)
(b) Show that there are real numbers x_{1}\leq x_{2}\leq \cdots \leq x_{n} such that the equality holds in (*).

Author: Michael Albert, New Zealand

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1876IMO Shortlist 1994 problem A23
1899IMO Shortlist 1995 problem A122
1922IMO Shortlist 1995 problem S24
2038IMO Shortlist 2000 problem A131
2235IMO Shortlist 2007 problem A211
2264IMO Shortlist 2008 problem A124