« Vrati se
For a prime p and a given integer n let \nu_p(n) denote the exponent of p in the prime factorisation of n!. Given d \in \mathbb{N} and \{p_1,p_2,\ldots,p_k\} a set of k primes, show that there are infinitely many positive integers n such that d|\nu_{p_i}(n) for all 1 \leq i \leq k.

Author: Tejaswi Navilarekkallu, India

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
2010IMO Shortlist 1998 problem N83
2145IMO Shortlist 2003 problem N71
2146IMO Shortlist 2003 problem N81
2203IMO Shortlist 2005 problem N72
2233IMO Shortlist 2006 problem N73
2319IMO Shortlist 2009 problem N70