« Vrati se
Let a, b, c, d be positive real numbers such that abcd = 1 and a + b + c + d > \dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{d} + \dfrac{d}{a}. Prove that
a + b + c + d < \dfrac{b}{a} + \dfrac{c}{b} + \dfrac{d}{c} + \dfrac{a}{d}
Proposed by Pavel Novotný, Slovakia

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1904IMO Shortlist 1995 problem A60
2206IMO Shortlist 2006 problem A31
2207IMO Shortlist 2006 problem A43
2239IMO Shortlist 2007 problem A61
2266IMO Shortlist 2008 problem A36
2270IMO Shortlist 2008 problem A70