« Vrati se
Let S = \{x_1, x_2, \ldots, x_{k + l}\} be a (k + l)-element set of real numbers contained in the interval [0, 1]; k and l are positive integers. A k-element subset A\subset S is called nice if
\left |\frac {1}{k}\sum_{x_i\in A} x_i - \frac {1}{l}\sum_{x_j\in S\setminus A} x_j\right |\le \frac {k + l}{2kl}
Prove that the number of nice subsets is at least \dfrac{2}{k + l}\dbinom{k + l}{k}.

Proposed by Andrey Badzyan, Russia

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1873IMO Shortlist 1993 problem N31
1993IMO Shortlist 1998 problem C60
2022IMO Shortlist 1999 problem C61
2050IMO Shortlist 2000 problem C60
2131IMO Shortlist 2003 problem C60
2276IMO Shortlist 2008 problem C60