%V0
Let $a, b, c$ be positive real numbers such that $$\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=2\text{.}$$
Prove that $$\frac{\sqrt a + \sqrt b+\sqrt c}{2} \geq \frac{1}{\sqrt a}+\frac{1}{\sqrt b}+\frac{1}{\sqrt c}\text{.}$$
Let , , be real numbers satisfying . Prove that and determine when equality holds.
%V0
Let $x$, $y$, $z$ be real numbers satisfying $x^2+y^2+z^2+9=4(x+y+z)$. Prove that $$x^4+y^4+z^4+16(x^2+y^2+z^2) \ge 8(x^3+y^3+z^3)+27$$ and determine when equality holds.